588 research outputs found

    A transient heat transfer and thermodynamic analysis of the Apollo service module propulsion system. Vol. I, phase I - Transient thermal analysis Final report, 28 Jul. 1964 - 28 Jul. 1965

    Get PDF
    Transient heat transfer and thermodynamic behavior analysis for Apollo service module propulsion system - fuel cell effect on overheatin

    Extent and distribution of linkage disequilibrium in the Old Order Amish

    Get PDF
    Knowledge of the extent and distribution of linkage disequilibrium (LD) is critical to the design and interpretation of gene mapping studies. Because the demographic history of each population varies and is often not accurately known, it is necessary to empirically evaluate LD on a population-specific basis. Here we present the first genome-wide survey of LD in the Old Order Amish (OOA) of Lancaster County Pennsylvania, a closed population derived from a modest number of founders. Specifically, we present a comparison of LD between OOA individuals and US Utah participants in the International HapMap project (abbreviated CEU) using a high-density single nucleotide polymorphism (SNP) map. Overall, the allele (and haplotype) frequency distributions and LD profiles were remarkably similar between these two populations. For example, the median absolute allele frequency difference for autosomal SNPs was 0.05, with an inter-quartile range of 0.02–0.09, and for autosomal SNPs 10–20 kb apart with common alleles (minor allele frequency≥0.05), the LD measure r 2 was at least 0.8 for 15 and 14% of SNP pairs in the OOA and CEU, respectively. Moreover, tag SNPs selected from the HapMap CEU sample captured a substantial portion of the common variation in the OOA (∼88%) at r 2 ≥0.8. These results suggest that the OOA and CEU may share similar LD profiles for other common but untyped SNPs. Thus, in the context of the common variant-common disease hypothesis, genetic variants discovered in gene mapping studies in the OOA may generalize to other populations. Genet. Epidemiol . 34: 146–150, 2010. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64895/1/20444_ftp.pd

    Circulating CD34+ Cell Count is Associated with Extent of Subclinical Atherosclerosis in Asymptomatic Amish Men, Independent of 10-Year Framingham Risk

    Get PDF
    Background Bone-marrow derived progenitor cells (PCs) may play a role in maintaining vascular health by actively repairing damaged endothelium. The purpose of this study in asymptomatic Old Order Amish men (n = 90) without hypertension or diabetes was to determine if PC count, as determined by CD34+ cell count in peripheral blood, was associated with 10-year risk of cardiovascular disease (CVD) and measures of subclinical atherosclerosis. Methods and Results CD34+ cell count by fluorescence-activated cell sorting, coronary artery calcification (CAC) by electron beam computed tomography, and CVD risk factors were obtained. Carotid intimal-medial thickness (CIMT) also was obtained in a subset of 57 men. After adjusting for 10-year CVD risk, CD34+ cell count was significantly associated with CAC quantity ( p =0.03) and CIMT ( p < 0.0001). A 1-unit increase in natural-log transformed CD34+ cell count was associated with an estimated 55.2% decrease (95% CI: −77.8% to −9.3%) in CAC quantity and an estimated 14.3% decrease (95% CI: −20.1% to −8.1%) in CIMT. Conclusions Increased CD34+ cell count was associated with a decrease in extent of subclinical atherosclerosis in multiple arterial beds, independent of 10-year CVD risk. Further investigations of associations of CD34+ cell count with subclinical atherosclerosis in asymptomatic individuals could provide mechanistic insights into the atherosclerotic process

    The genetic determinants of recurrent somatic mutations in 43,693 blood genomes

    Get PDF
    Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences

    Genetic variation of Glucose Transporter-1 (GLUT1) and albuminuria in 10,278 European Americans and African Americans: a case-control study in the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence suggests glucose transporter-1(<it>GLUT1</it>) genetic variation affects diabetic nephropathy and albuminuria. Our aim was to evaluate associations with albuminuria of six <it>GLUT1 </it>single nucleotide polymorphisms(SNPs), particularly <it>XbaI </it>and the previously associated <it>Enhancer-2(Enh2</it>) SNP.</p> <p>Methods</p> <p>A two-stage case-control study was nested in a prospective cohort study of 2156 African Americans and 8122 European Americans with urinary albumin-to-creatinine ratio(ACR). Cases comprised albuminuria(N = 825; ≥ 30 μg/mg) and macroalbuminuria(N = 173; ≥ 300 μg/mg). ACR < 30 μg/mg classified controls(n = 9453). Logistic regression and odds ratios(OR) assessed associations. The evaluation phase(stage 1, n = 2938) tested associations of albuminuria(n = 305) with six <it>GLUT1 </it>SNPs: rs841839, rs3768043, rs2297977, <it>Enh2</it>(rs841847) <it>Xba</it>I(rs841853), and rs841858. <it>Enh2 </it>was examined separately in the replication phase(stage 2, n = 7340) and the total combined sample (n = 10,278), with all analyses stratified by race and type 2 diabetes.</p> <p>Results</p> <p>In European Americans, after adjusting for diabetes and other <it>GLUT1 </it>SNPs in stage 1, <it>Enh2 </it>risk genotype(TT) was more common in albuminuric cases(OR = 3.37, P = 0.090) whereas <it>XbaI </it>(OR = 0.94, p = 0.931) and remaining SNPs were not. In stage 1, the <it>Enh2 </it>association with albuminuria was significant among diabetic European Americans(OR = 2.36, P = 0.025). In African Americans, <it>Enh2 </it>homozygosity was rare(0.3%); <it>XbaI </it>was common(18.0% AA) and not associated with albuminuria. In stage 2(n = 7,340), <it>Enh2 </it>risk genotype had increased but non-significant OR among diabetic European Americans(OR = 1.66, P = 0.192) and not non-diabetics(OR = 0.99, p = 0.953), not replicating stage 1. Combining stages 1 and 2, <it>Enh2 </it>was associated with albuminuria(OR 2.14 [1.20-3.80], P = 0.009) and macroalbuminuria(OR 2.69, [1.02-7.09], P = 0.045) in diabetic European Americans. The <it>Enh2 </it>association with macroalbuminuria among non-diabetic European Americans with fasting insulin(OR = 1.84, P = 0.210) was stronger at the highest insulin quartile(OR = 4.08, P = 0.040).</p> <p>Conclusions</p> <p>As demonstrated with type 1 diabetic nephropathy, the <it>GLUT1 Enh2 </it>risk genotype, instead of <it>Xba</it>I, may be associated with type 2 diabetic albuminuria among European Americans, though an association is not conclusive. The association among diabetic European Americans found in stage 1 was not replicated in stage 2; however, this risk association was evident after combining all diabetic European Americans from both stages. Additionally, our results suggest this association may extend to non-diabetics with high insulin concentrations. Rarity of the <it>Enh2 </it>risk genotype among African Americans precludes any definitive conclusions, although data suggest a risk-enhancing role.</p

    Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program

    Get PDF
    OBJECTIVE— Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo

    \u3cem\u3eCPT1A\u3c/em\u3e Methylation Is Associated with Plasma Adiponectin

    Get PDF
    Background and Aims—Adiponectin, an adipose-secreted protein that has been linked to insulin sensitivity, plasma lipids, and inflammatory patterns, is an established biomarker for metabolic health. Despite clinical relevance and high heritability, the determinants of plasma adiponectin levels remain poorly understood. Methods and Results—We conducted the first epigenome-wide cross-sectional study of adiponectin levels using methylation data on 368,051 cytosine-phosphate-guanine (CpG) sites in CD4+ T-cells from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, n= 991). We fit linear mixed models, adjusting for age, sex, study site, T-cell purity, and family. We have identified a positive association (regression coefficient ± SE= 0.01 ± 0.001, P=3.4x10−13) between plasma adiponectin levels and methylation of a CpG site in CPT1A, a key player in fatty acid metabolism. The association was replicated (n=474, P=0.0009) in whole blood samples from the Amish participants of the Heredity and Phenotype Intervention (HAPI) Heart Study as well as White (n=592, P=0.0005) but not Black (n=243, P=0.18) participants of the Bogalusa Heart Study (BHS). The association remained significant upon adjusting for BMI and smoking in GOLDN and HAPI but not BHS. We also identified associations between methylation loci in RNF145 and UFM1 and plasma adiponectin in GOLDN and White BHS participants, although the association was not robust to adjustment for BMI or smoking. Conclusion—We have identified and replicated associations between several biologically plausible loci and plasma adiponectin. These findings support the importance of epigenetic processes in metabolic traits, laying the groundwork for future translational applications

    Genetic modulation of lipid profiles following lifestyle modification or metformin treatment: The Diabetes Prevention Program

    Get PDF
    Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, Pinteraction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; Pinteraction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, Pinteraction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; Pinteraction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss

    Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program

    Get PDF
    Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P = 0.002) and GCKR (P = 0.001). We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program
    corecore